New Skills Build New Brain Architecture, Research Shows

The brain’s structure can change when human beings—in this case, dyslexic children—learn a new ability

By

SUSAN PINKER

June 14, 2018 12:27 p.m. ET

See the column on the Wall Street Journal site

The latest tools of neuroscience allow us to witness, as never before, the electrical flares, chemical landslides and sluicing of water from zone to zone that alter the geography of the brain as it changes.

Evidence of the ways neural tissue is partially destroyed after a stroke or the onset of dementia has been around for decades. But proof that missing or miswired human brain connections can grow again—what neuroscientists call plasticity—has so far been thin on the ground. In 2014 a study showed that for mice, novel experiences prompt almost immediate changes in white matter—the brain’s connective tissue, or highway system.

Does this structural transformation linked to learning a new skill hold for humans too? The answer appears to be yes. A study just published in the journal Nature Communications found distinct shifts in brain architecture that mirrored the growing reading skills of children with dyslexia.

“The way the connections between different brain regions had changed was startling,” said Jason Yeatman, an assistant professor at the University of Washington who led the study.

Dr. Yeatman’s team, including postdoctoral student Elizabeth Huber, began by recruiting 24 dyslexic children, ages 7 and 12, who had been struggling to learn to read. Few of them could decipher more than simple three-letter words, which largely excluded them from the classroom experience, said Dr. Yeatman.

The researchers thoroughly tested the children’s reading skills and assessed their brain architecture using diffusion magnetic resonance imaging. This noninvasive type of brain imaging tracks how quickly water flows among regions of the brain. It provides a measure of brain density, which increases with the formation of new brain cells, connections and membrane

The children’s initial MRI was followed by three subsequent imaging sessions, evenly spaced over the course of their participation in an intensive, eight-week summer reading program. Designed by the Seattle-based tutoring company Lindamood-Bell, the program provided one-on-one instruction for four hours a day, five days a week. Unlike much recent research on children’s learning, the instruction was in person, not screen-based.

The results showed significant improvement in reading skills—and as the children’s reading fluency increased, large tracts of the white matter in their brains were visibly revamped. “It was not known before that the physical structure and efficiency of the brain could change in just a few weeks,” said Dr. Yeatman.

The instructional approach was, by design, highly individualized and interpersonal. It targets the building blocks of reading and is intended to give children with dyslexia the tools they need to read. But it is just one of several evidence-based, effective approaches. In the future, the researchers hope to compare it to other reading programs to see which features of a curriculum are critical to stimulating rapid changes in white matter.

“It was not known before that the physical structure and efficiency of the brain could change in just a few weeks,” said Prof. Yeatman. “That was one surprising thing.” Another was that the renovation was so pervasive. The researchers expected the observed improvement in the brain’s language areas. “But we also saw changes in the corticospinal tract,” which allows sensation and movement to be sensed by the brain, Dr. Yeatman added.

Perhaps the bond between teacher and child or the frequency and intensity of the teaching program made the difference. It’s hard to pinpoint the cause—or to know how long the neural and behavioral changes will last. But the changes were still impressive.

“We knew it was possible for the brain to change in mice, but we didn’t know the time frame, and we didn’t know how extensive the remodeling was in humans,” said Dr. Yeatman. Now we know that education can physically alter the brains of mice and men—or, more important, boys and girls.

Smiles Hide Many Messages—Some Unfriendly

Faces that mean domination, reward or just ‘I want to get along with you’

By

SUSAN PINKER

April 5, 2018 10:20 a.m. ET

See the column on the Wall Street Journal site

 

Smile while your heart is breaking, put on a happy face, say cheese. We’re so used to smiling on demand that to do otherwise can seem antisocial. Even going through the motions of a smile, scientists have found, can make us feel happy.

But smiles take many forms, and not all of them sound a single, upbeat note. According to recent research, smiles are more like Morse code, silently broadcasting distinct, nuanced messages. A smile might be signaling “Do that again” (reward), “I want to get along with you” (affiliation) or “I’m No. 1 around here” (dominance). Most of us receive these nonverbal signals loud and clear; they register in the chemical cocktail infusing our saliva and the thrum of our heartbeat, says a study published last month in the journal Scientific Reports.

“Different smiles have different impacts on people’s bodies,” said Jared D. Martin, a doctoral student who led the study in the lab of University of Wisconsin psychology professor Paula Niedenthal, working in collaboration with Eva Gilboa-Schechtman of Israel’s Bar-Ilan University. Along with poker players, psychologists have long known that our facial expressions can betray our emotions. But no one has demonstrated exactly how this works, Mr. Martin said.

To explore whether certain types of smiles provoke distinct physiological responses, Mr. Martin’s team set up an experiment based on public speaking. Research shows that most people would rather get zapped with an electric shock than give a five-minute speech about themselves. It’s a handy way to examine how our bodies register stress. So in this experiment, 90 healthy male undergraduate students delivered three spontaneous speeches about themselves, each to an audience of one. The listener smiled away on Skype while they were talking.

That listener was supposedly chosen randomly but in reality was a plant trained to smile in one of three ways during the other’s short spiels: to signal reward, affiliation or dominance. The dominance smile is mildly lopsided, with closed lips and one or both eyes squeezed shut, whereas reward smiles show upturned lips exposing a row of teeth and crinkled eyes. Affiliation smiles feature pursed lips, the whites of the eyes and raised eyebrows.

The research team measured the impact of these three types of smiles by continuously monitoring the speaker’s heart rate and periodically assessing his salivary levels of cortisol, a hormone often used as a marker of stress.

The researchers found that there was eight times as much cortisol in the saliva of students facing a dominance smile as in those facing affiliative smiles and 16 times as much as in those facing reward smiles.

There were also intriguing differences in how people reacted to the different smiles. “Your heart doesn’t beat like a metronome,” Mr. Martin said, and “people with higher variability in their resting heart rate had more extreme cortisol responses to dominance smiles.” These new results are in line with a 2017 German study showing that people with more-variable heart rates are much better at reading others’ mental states in their facial expressions—what psychologists call mind-reading.

The current study tells us that the people with higher heart-rate variability are not only more stressed out by dominance but also more comforted by affiliative smiles. “They’re more attuned,” said Mr. Martin.

The study was on the small side, the subjects restricted to men, and each student received just one type of smile, so the experimenters couldn’t compare how a particular student would respond to different expressions.

But the study helps us to understand the arcane signals exchanged by our intensely social species. The sense of how others view us is read not just by the head but by the hormones coursing through our bodies and the rhythm of our hearts.

Why Aren’t There More Women in Science and Technology?

A new study finds puzzling national differences: a bigger share of STEM degrees for women in Tunisia than in Sweden

By

SUSAN PINKER

March 1, 2018 10:37 a.m. ET

See the column on the Wall Street Journal site

 

A key tenet of modern feminism is that women will have achieved equity only when they fill at least 50% of the positions once filled by men. In some fields, women have already surpassed that target—now comprising, for example, 50.7% of new American medical students, up from just 9% in 1965, and 80% of veterinary students. But the needle has hardly moved in many STEM fields—such as the physical sciences, technology, engineering and math, in which barely 20% of the students are female.

A new study suggests some surprising reasons for this enduring gap. Published last month in the journal Psychological Science, the study looked at nearly a half million adolescents from 67 countries who participated in the Program for International Student Assessment, the world’s largest educational survey. Every three years, PISA gauges the skills of 15-year-olds in science, reading and math reasoning. In each testing year, the survey focuses in depth on one of those categories.

In 2015 the focus was on science literacy, which gave the psychologists Gijsbert Stoet of Leeds Beckett University and David Geary of the University of Missouri a rich data set for examining not only national differences but also the range of academic strengths and weaknesses within each student.

Some fascinating gender differences surfaced. Girls were at least as strong in science and math as boys in 60% of the PISA countries, and they were capable of college-level STEM studies nearly everywhere the researchers looked. But when they examined individual students’ strengths more closely, they found that the girls, though successful in STEM, had even higher scores in reading. The boys’ strengths were more likely to be in STEM areas. The skills of the boys, in other words, were more lopsided—a finding that confirms several previous studies.

If boys chose careers based on their own strengths—the approach usually suggested by parents and guidance counselors—they would be most likely to land in a STEM discipline or another field drawing on the same sorts of skills. Girls could choose more widely, based on their own strengths. And both, of course, would pursue their particular interests, as best they could.

Which leads to the study’s most thought-provoking finding. Based on how female students did in math and science in high school, the researchers predicted that at least 41% of girls would pursue a college STEM degree. This was indeed what they found, using Unesco education data—but only in countries with relatively weak legal protections for women, such as Algeria, Tunisia, Albania and the United Arab Emirates. So the nations with the least gender equality, as determined by the World Economic Forum’s Global Gender Gap Report, had the highest representation of women in STEM.

Conversely, nations with the strongest protections for women and the most dependable social safety nets—such as Sweden, Switzerland, Norway and Finland—had the fewest female STEM graduates, about 20% overall. The study puts the American STEM graduation rate at 24%.

I asked Wendy Williams, founder and director of the Cornell Institute for Women in Science, what she makes of these findings. She wrote that if girls expect they can “live a good life” while working in the arts, health or sciences, then girls choose to pursue what they are best at—which could be STEM, or it could be law or psychology. She added, “However, if the environment offers limited options, and the best ones are in STEM, girls focus there…Stoet’s and Geary’s findings deservedly complicate the simplistic narrative that sex differences in STEM careers are the result of societal gender biases.”

That conclusion should prompt a rethink. If women are most likely to choose STEM careers in societies that offer less equality and fewer personal freedoms, then that’s a steep price to pay just to say we’re 50/50.

For Long-Term Happiness, the Wedded Win the Race

Multiyear surveys involving thousands bolster the results

By

SUSAN PINKER

Jan. 26, 2018 10:41 a.m. ET

See the column on the Wall Street Journal site

 

Last month I attended a family wedding in a city better known for its frigid winter winds and industrial history than for its natural beauty. Let’s just say it wasn’t a destination wedding. Still, the young couple and their families were over the moon with joy, as were the hundreds who attended.

In an era when the number of unmarried couples living together continues to rise, up by nearly 30% in the U.S. in the last decade alone, why make a big fuss over marriage?

One could say that by tying the knot, the 20-somethings were fulfilling religious and family traditions, making a public declaration of their love or expressing a vote of confidence in the future. A new study also suggests a more practical motive: Getting married is one of the best ways to cement a couple’s long-term happiness.

Published in December in the Journal of Happiness Studies, the study analyzed people’s responses to two huge British surveys about life satisfaction. The study’s authors— John Helliwell, an economist at the University of British Columbia, and his former graduate student, Shawn Grover —hoped to answer two questions: Is marriage’s effect on happiness short-lived? And does marriage cause happiness, or is it that happy people are more likely to get and stay married in the first place?

To isolate these different variables, the researchers turned first to a longitudinal survey project by a British institute. From 1991 to 2009, demographers asked 30,000 adults of varying ages about their lifestyles and moods, posing the same questions year after year. This allowed the Helliwell research team to see how happy people were long before—as well as a decade after—they met their partners, and also to assess how their levels of happiness changed over the long run. Whether they ultimately married, divorced, stayed single or were living together, the researchers thus had a snapshot in hand of their pre-relationship sense of fulfillment.

This is crucial, because happiness is U-shaped across the adult life-span, meaning that it normally rises when we’re young adults, drops during middle age when life’s stresses and existential questions loom large, and then rises again as older adults regain their equilibrium. To bolster their findings, the researchers also used a second survey, 10 times as large as the first and based on U.K. census data. This Annual Population Survey by the national statistics office queried more than 300,000 people from 2011 to 2013 about their anxieties, social lives and happiness.

The researchers’ answer to their first question—whether marriage had a merely short-lived effect on happiness—was definitively no. When they controlled for their pre-marriage status, married people were 10% more satisfied than people who were single—and were more likely to stay that way. While cohabiting couples were happier than single folks, they were only three-quarters as happy as marrieds. “Marriage seems to be most important in middle age, when people of every marital status experience a dip in well-being,” the economists wrote.

Not all marriages are created equal, of course. At least a dozen studies show that marriages characterized by stonewalling, contempt or conflict are bad for us, undermining our sleep, immunity and cardiovascular health. Conversely, one of the most telling findings of the Helliwell study is that a close marital bond spurs long-term happiness. People who named their spouse as their best friend were twice as happy as those who didn’t. “The more likely you are to regard someone as your friend, the more likely you’ll think the best of them, and not take them for granted. If that’s true, it’s a very successful marriage,” Prof. Helliwell said.

It’s good to know that someone has your back. That level of commitment, formalized by a ritual and a legal document, may be one reason why the advantages of marriage trump those of just living together. Along with chocolate, it’s all food for thought as we approach Valentine’s Day.

 

Spanking for Misbehavior? It Causes More

A big new study finds a clear negative effect

By

SUSAN PINKER

Dec. 14, 2017 11:08 a.m. ET

See the column on the Wall Street Journal site 

Most children under 7 can neither master their emotions nor reason like adults, so power struggles with them are inevitable. Who gets to control the TV remote or the smartphone? Does junior resist taking a bath, wander around after bedtime, gleefully use curse words or pound on his siblings every chance he gets?

The answer to at least some of these questions must be yes, if the child is a growing human being and not a robot. Experimenting with autonomy and observing how his parents react is part of the job of a child. Setting age-appropriate boundaries is the role of the adult.

The dynamics become even more complex when a child is defiant or impulsive by nature, when a parent is under inordinate pressure, or all of the above. That is perhaps one reason why two-thirds of American parents, when asked by the federally funded General Social Survey in 2016, agreed with the statement, “Sometimes a child just needs a good, hard spanking.” (The number has dropped by about 15 points in the past three decades.)

A host of studies link spanking to later behavior problems. A 2016 meta-analysis of five decades of research on the topic suggests that spanking a young child is not only an ineffective form of discipline but a catalyst for more serious acting out and mental health problems in the future. Indeed, corporal punishment of children is now illegal in 53 countries, and banning any kind of hitting of children—with a hand or an object—is a growing international movement.

Whether striking a preschooler’s bottom with an open hand discourages or exacerbates misbehavior remains a controversial topic in the U.S. Adding grist to the debate: The studies that have been conducted are observational—that is, they show that spanking and future behavior problems are tightly linked but not that the former definitively causes the latter. Children can’t be randomly assigned, for experimental purposes, to spanked and not spanked groups, so it’s hard to discern whether later behavior problems can be attributed to that one factor.

A new study led by Elizabeth Gershoff, a professor of human development at the University of Texas at Austin, aims to settle this dispute. Published last month in the journal Psychological Science, the study statistically controlled for children’s initial behavior problems and the characteristics of their parents. More than 12,000 American families were surveyed, from their children’s kindergarten year through eighth grade, as part of the nationally representative Early Childhood Longitudinal Study.

The researchers paired subjects who had and had not been spanked at 5 years old but were equivalent on 38 other factors. Those included the child’s initial level of behavior problems as rated by the teacher, and the parents’ marital status, mental health, stress levels and parenting style as defined by their answers to interview questions.

The researchers found that a child who was spanked at age 5 was far more likely to have behavior problems at age 6, and more serious ones again at age 8, according to teachers’ ratings. The relationship between corporal punishment and later acting out was even stronger if parents said that they had spanked the 5-year-olds the week before the survey, an indication that spanking may have been relatively frequent.

“This is the closest we can get, outside of an experiment, to say that spanking causes negative changes in children’s behavior. I can’t think of another way to explain our results,” Ms. Gershoff told me.

The American Pediatric Society advises parents to avoid spanking, and the American Psychological Association cautions against the practice. American parents seem to be left with a choice: To use a form of physical discipline that gambles with the future of their children or to find other ways to help them learn self-control.

Can Brain Scans Curb the Rising Rate of Suicide?

Aside from genetics, any parental contribution to the disorders is probably nil

By

SUSAN PINKER

Nov. 10, 2017 10:17 a.m. ET

See the column on the Wall Street Journal site

Suicide is the 10th leading cause of death in the U.S. After a period of decline, it rose 24% in the 15 years ending in 2014, and a gender gap has persisted—four times as many men as women kill themselves.

For clinicians, identifying who is at risk for suicide has long posed a challenge. How do you tell the difference between a person who is distressed but not in danger from someone quietly planning to take his own life? If we could answer that question, we could prevent many untimely deaths. Research shows that taking one’s life is rarely a spur-of-the-moment idea and that most suicidal people have a plan in mind before they act on it.

Now, it seems, computers may be able to help discern who is in danger. A study published last month in the journal Nature Human Behaviour shows that machines can learn to identify suicidal people based on their brain scans.

“Human brains have a common way to represent objects and emotions,” said Marcel Just, a professor of cognitive neuroscience at Carnegie Mellon University and the paper’s first author. That process is so universal, Dr. Just said, that his team’s scanning studies have found the same brain-activation patterns for a word like apple in English, Portuguese and Mandarin speakers.

Four years ago, Dr. Just’s team began capturing brain-activation patterns for emotions by putting actors into brain scanners. Researchers asked them to imagine scenarios that would make them feel anger, envy, shame and other emotions, thus capturing neural signatures for these mental states. The researchers then had a basic visual dictionary of how the brain represents emotions, a resource that would come in handy for their study on suicide risk.

In that study, Dr. Just’s team exposed 34 adults under age 30 to over two dozen words repeated randomly while they were lying in the scanner. Of the subjects, half had a history of suicidal thoughts or suicide attempts. The other half, with no history of mental illness, were the control group.

​While in the scanner, the subjects saw slides of emotionally evocative words, including “carefree,” “cruelty,” “praise,” “gloom” and “lifeless.” The participants’ neural responses to these words were carefully mapped using voxel analysis—which captures varying patterns of brain activation according to a 3-D grid of about 20,000 voxels. These are created when neuroscientists electronically dice up the brain into 3-D cubes so they can measure and compare what’s happening in various locations.

Only 120 voxels or so reflect how the brain processes emotional concepts, said Dr. Just, adding: “You show me the activation pattern in those 120 voxels and I’ll show you what word you’re thinking about.”

By analyzing small pattern differences in the neural signatures, the team created a computer algorithm—a set of rules to follow in digital calculations—that could learn to differentiate people with suicidal intentions from members of the control group.

Based on the computer’s prototype of each group’s neural responses, the algorithm could predict whether a subject had previously thought about suicide—or had no such history—with 90% accuracy. The machine could also separate those who had contemplated suicide from those who had really tried it, correctly distinguishing between the two 94% of the time.

“I’m a cognitive psychologist. I used to think that the human mind was for arithmetic, reading and planning where to park your car,” Dr. Just said, remarking on the early preoccupations of cognitive science with pure problem solving. “But when I started to do brain imaging, I saw the networks that become activated” when a person thinks of other people, their intentions or their goals.

Predicting the chances of suicide based on biological markers like brain scans is a monumental achievement. Let’s hope a reliable and affordable version will be available to medicine sometime soon.

New Tools Detect Autism Disorders Earlier in Lives

Aside from genetics, any parental contribution to the disorders is probably nil

By

SUSAN PINKER

Oct. 5, 2017 10:56 a.m. ET

See the column on the Wall Street Journal site

When a child is diagnosed with an autistic-spectrum disorder, a parent’s emotions can swing from disbelief to worry to despair, and many ask themselves the understandable question: Why did this happen?

Genes are the answer, though which combinations are responsible remains a mystery.

The mounting evidence for a heritable cause hasn’t stopped some people from trying to pin the disorder on parents, fueling parental guilt and damaging families that are already struggling with a child’s diagnosis. Now a new study shows that the roots of autistic disorders are detectable so early in life that, other than genes, any parental contribution to the disorder is probably nil.

There is a long and bitter history of baseless finger-pointing around autism. In one of 20th-century psychology’s most shameful mistakes, supposed experts blamed the childhood disorder on “refrigerator mothers,” who were said to cause autism by being emotionally distant. Ultimately, studies showed that a crucial clue to the disorder’s origin was the babies’ inability to respond to their mother’s nurturing—not the other way around. Fifty years later, activists tied autism to childhood vaccines. This false idea led to fewer immunized children and a resurgence of dangerous infectious childhood diseases.

In this new study, John Lewis, the lead author and a neuroscientist at the Montreal Neurological Institute, analyzed data from the MRIs of 260 babies to chart the trajectory of their developing brains. (It was published this summer in Biological Psychiatry.) His previous work had revealed that toddlers with a strong family history of autistic spectrum disorders show sluggish neural pathways in areas critical to language and social development. Such pathways, composed of nerve fibers, transmit information from the body’s five senses and allow regions of the brain to communicate with each other. Dr. Lewis wanted to see how early these neural inefficiencies appeared.

Using MRI-based data, Dr. Lewis and his team charted—at six months of age and again at 12 months—the length and strength of fibers connecting different regions of the babies’ brains. Shorter and stronger connections are more efficient.

As children grow, their brains typically streamline such connections by “pruning”—a form of neural housekeeping whereby unnecessary or unused connections between distant brain regions are weeded out.

His research team the tracked neural pathways of two groups of infants. One group had a sibling on the autistic spectrum—which meant the baby was at high risk of developing the disorder. The control group had no family history of autistic spectrum disorders.

A comparison of the two groups revealed that, when analyzed as a group, the brains of 6-month-olds with an autistic sibling showed inefficiencies in the right auditory cortex, an area that processes speech sounds. By 12 months of age, certain neural areas critical for language, touch and self-awareness were also less efficient than those of the control group. “If your brain starts off not processing the sensory inputs efficiently, then it can’t do the proper pruning. It’s just passing on noise,” said Dr. Lewis.

The study was launched seven years ago, and by the time it was complete, the researchers knew which of the high-risk infants ended up with an autism spectrum diagnosis. (Almost 17% of the high-risk group received an autism diagnosis, compared with 1.3% of the control group.) Yet they found that the biological markers of their disorder were evident at 6 months of age.

A computer analysis of the high-risk group’s MRIs could retroactively identify which babies would ultimately show behavioral signs of autism spectrum diagnosis years later—and which babies would be unaffected. What’s more, the degree of neural inefficiency predicted how severe that child’s symptoms would be.

This research suggests that very early diagnosis—and early intervention—is on our doorstep. It also means that parents can’t be blamed.

Social Ties Are Key for Survivors of a Disaster

In the aftermath of the 2011 tsunami, studies show that how people are relocated can affect their recovery

By

SUSAN PINKER

Aug. 17, 2017 10:21 a.m. ET

See the column on the Wall Street Journal site

Twelve years ago this month, Hurricane Katrina devastated New Orleans and much of the rest of the Gulf Coast, killing some 1,500 people and displacing more than a million others. Six years later, when an earthquake and tsunami hit eastern Japan in 2011, about 18,500 people lost their lives, and another 345,000 lost their homes, some permanently.

Researchers have found that disaster survivors often suffer from a range of long-term mental and physical problems. Daniel Aldrich of Northeastern University has shown, for example, that those forced to relocate subsequently experience higher rates of depression and divorce. Survivors of the Japanese tsunami were found to have a sharply higher rate of cognitive decline for their population, according to researchers at the Harvard T.H. Chan School of Public Health and several Japanese universities.

For those concerned about responding more effectively to future catastrophes, the question is whether it is possible to prevent such negative effects. Scientists studying the Japanese tsunami now seem to have discovered at least part of the solution: It turns out that howpeople are moved after a disaster has a big impact on their social relationships and, ultimately, on their health.

The findings, reported last month in the journal Science Advances, emerged by “pure serendipity,” according to Ichiro Kawachi, the lead author of the new study who had worked on the earlier cognitive-decline paper.

In 2010, Prof. Kawachi, an epidemiologist at the T.H. Chan School of Public Health, along with his postdoctoral fellow Hiroyuki Hikichi and several colleagues, launched a study in Japan focused on the predictors of healthy aging. The researchers sent detailed questionnaires about lifestyle and social habits to everyone over age 65 in 20 Japanese municipalities. Seven months later the tsunami hit. By then, the researchers had extensive data on about 3,420 people in the Miyagi Prefecture, a densely inhabited area about 50 miles from the disaster’s epicenter.

Of these people, 175 had to be permanently resettled, because their homes were destroyed. First they had to endure “stressful living situations in school gyms, where there were few toilets and no privacy. People were in a hurry to get out of there,” said Prof. Kawachi. To get to the next stage, for more permanent housing, individual survivors could either sign up for a lottery that gave winners access to the front of the line for trailers or could wait and move into emergency shelters as a neighborhood or group. Ultimately, everyone ended up in the same remote, unheated and rather dismal type of shelter.

Two and a half years after the disaster, the researchers again reached out to the survivors. The 96 people who had relocated on their own, the researchers learned, ended up with an impoverished social life. Compared with their pre-tsunami lives, they met less with friends and joined in fewer civic and leisure activities. They were also less likely to support other people or get help themselves. The disaster had effectively stranded them.

In comparison, the 79 people who relocated as a group preserved and enhanced their patterns of informal socializing, not only with friends, but also in how they engaged with the community—in sports, church, hobbies or volunteering. The researchers were careful to control for any independent effect that people’s personality traits or other factors might have had on the results.

The upshot? The weight of evidence shows that disaster-response managers should focus less on speed, sea walls and sandbags and more on preserving people’s social ties, says Prof. Aldrich, who has studied both the Japanese and Gulf Coast catastrophes. “After Katrina, people were put on a bus and not told where they were going. When they arrived they were told, ‘Welcome. You’re living in Arkansas now.’ ”

Prof. Kawachi agrees. “Losing contact with neighbors…hastens dementia and loss of physical function. An underappreciated aspect of disaster policy is that human relations matter as much as giving out timely aid.”

 

What Chimps Understand About Reciprocity

A new study suggests that one of our closest relatives can show intuitions of fairness

By

SUSAN PINKER

July 21, 2017 11:52 a.m. ET

See the column on the Wall Street Journal site

 

When someone does something nice for you, do you return the favor? Most of us do, and not just because our mothers said we should.

Basic fairness is probably written into our genetic code. Human societies depend on the expectation of reciprocity: We assume that a neighbor will collect our mail if we’ve mowed their lawn, or that drivers will take turns braking at stop signs.

Fundamental as this trait might seem, however, its evolutionary origins are hazy. Previous research has shown that chimpanzees—one of our closest relatives—are less motivated by fairness than by what they immediately stand to gain from a transaction.

A new study shows that chimps can go beyond such reflexive selfishness and cooperate, even if it costs them something. But they don’t just give up what’s theirs, even to their kin. They are particular about when they will share some of their food, according to researchled by University of Vienna biologist Martin Schmelz and just published in Proceedings of the National Academy of Sciences.

Like many of us, the team found, chimps keep score: They’re most likely to allot treats to a partner if that chimp helped them first.

How do we know this, since chimps can’t discuss their intentions? Dr. Schmelz and his colleagues constructed an apparatus in which two chimps face one another with a cage between them. It contains several bowls of food, which the chimps can’t reach.

One chimp can pull on a string, thus lifting a latch that gives the other chimp access to the food in the cage. That chimp then has a decision to make: It can keep a larger portion entirely for itself—with nothing for its partner—or opt for two smaller but equal amounts. The helper chimp had been trained to always pull the string, thus giving its partner access to the bowls of food and the impression of generosity.

In these circumstances, the team found, the chimp given access to the bowls usually chose to reward the string-pulling helper chimp with an equal amount. The decider chimp seemed aware that the other chimp had provided a crucial benefit and wanted to reciprocate.

In other trials, no string was available to the helper chimp. A human experimenter opened the latch, while the helper chimp rocked on its haunches, apparently powerless. In this case, when the helper chimp wasn’t the one opening the hatch, the decider chimp seemed unconcerned about repaying any debt: Sometimes it allocated food to its partner, other times it didn’t.

The chimps were keeping a mental tally—or, to put it more charitably, showing intuitions of fairness. When the helper chimp opened the latch, the decider chimp “chose the option where they both got food more often,” Dr. Schmelz said. “But when I opened it, the [decider chimp] chose randomly.”

The study was small: It involved six chimps from the Leipzig Zoo that were more or less related to one another and took turns playing the role of helper and decider. Some of the chimps at the zoo couldn’t master the apparatus and were cut from the experiment. This raises the question of whether reciprocity surfaces only in more intelligent chimps.

Moreover, the chimps showed not pure generosity but tit-for-tat reciprocity. “They didn’t share spontaneously,” Dr. Schmelz noted. “They only gave a partner food when the partner had assisted them before.”

Still, the chimps had the smarts—and the primitive moral sense—to keep track of who just did what for whom, and they were motivated to reward or punish recent past behavior. The results were strikingly consistent, even in a limited sample, and suggest how more nuanced social exchanges in humans might have evolved.

We don’t usually expect animals to care about debts to each other. But the chimps’ ability to do just that may tell us something about the universal human capacity to form complex societies based on fairness.

 

 

 

 

Can an Entire Generation Change Its Personality?

By

SUSAN PINKER

See the column on the Wall Street Journal site

When the cartoon character Popeye proclaims, “I yam what I yam,” he personifies the idea that personality traits are more or less fixed in adulthood. Whether shy or outgoing, a leader or a follower, we are—notwithstanding minor tweaks—who we are.

But what if a whole generation can learn a new set of tricks?

A new study suggests as much. Published this month in the Proceedings of the National Academy of Sciences, the research shows a shift in many personality traits in men that could make them more successful in the workplace. This huge study included 80% of the male population born in Finland between 1962 and 1976, or 419,523 young men. All of them had taken standardized cognitive and personality tests when they entered the Finnish Defense Forces under a compulsory male draft at the age 19 or 20.

The researchers then looked at these Finnish men’s average annual earnings at age 30 to 34, which the scientists considered a good predictor of their lifetime earnings.

What struck researchers the most was that self-confidence, sociability and leadership motivation all rose on average from the group of men born in 1962 to those born in 1976. Striving, deliberation and dutifulness crept up too, though not as much. Levels of intelligence or family income didn’t seem to be driving these generational shifts, given that they surfaced at all cognitive levels and social strata.

And here’s the kicker: When the researchers compared personality scores when the men entered the draft with earnings at age 30 to 34, they found that even small upward shifts in personality ratings predicted a higher income 10 years later—with the 1976 group earning as much as 12% more than its 1962 counterpart, when other factors such as inflation, overall wage rises and education were stripped away.

“We don’t want to say that personality improves, because reasonable people can perfectly well disagree on what constitutes a good personality,” wrote Matti Sarvimäki, one of five authors of the study and an economist at Aalto University in Finland. “What we show is that the types of personality traits that predict higher earnings rise” from birth year to birth year.

Of course, we should be cautious when extrapolating from the experience of Finland, a country of about 5.5 million people, to the U.S. Nor is it clear whether these results would have a positive effect on the American labor pool. In addition, the Finnish study, due to the male-only draft, was limited to men.

Still, this study’s findings line up with some other positive trends. U.S. college students have become more outgoing, self-confident and self-absorbed—though that last trait may not be quite as positive as the others. Another rising measure: IQ scores are improving about three points a decade, a phenomenon known as the Flynn effect.

As with IQs, we don’t know why personality traits are changing. “It’s kind of a mystery,” says Richard Haier, an emeritus professor at the University of California, Irvine, and the author of “The Neuroscience of Intelligence.”

If extraversion is rising, he said, then—as is the case with IQ-test levels—improvements in general health and nutrition could be affecting the change. Education too could play a role, he says—for example, more exposure to problem-solving at school. Indeed, education is one of the factors Prof. Sarvimäki will explore next.

Page 1 of 41234